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This paper describes the synthesis of robust output feedback H,, control for a class of
uncertain Markovian jump linear systems with time-delays which are time-varying and depend
on the system modes of operation. Under the assumption of known bounds of system
uncertainties and the control system gain variations, we present sufficient conditions on
the existence of robust stochastic stability and y-disturbance H,, attenuation. Through the
changes of variables and Schur complements, these sufficient conditions can be rewritten in a
set of coupled linear matrix inequalities, with which, robust control can be easily constructed.
As an added advantage, the control design depends only on pj, ,, the measured parameter of
Markovian jumping at time ¢, which might be corrupted by measurement noises. Numerical
examples are provided to demonstrate the effectiveness of the proposed approach.

1. Introduction

In recent years, much attention has been devoted to
the time-delayed uncertain jump linear systems with
Markovian jumping parameters (Benjelloun and Boukas
1997, 1998, Boukas and Liu 2000, 2001, Wang et al.
2002, 2003, Yuan et al. 2003, Chen et al. 2003, 2004b
and Yuan and Mao 2004). The system is described by a
set of time-delayed linear systems with the transitions
between models determined by a Markov chain in a
finite mode set. With the maturity of H., control theory,
many works have been devoted to H., control of time-
delayed wuncertain jump linear systems under the
assumptions of (i) known jumping parameter variations,
and (ii) precise implementation of control systems. In
Benjelloun et al. (1999), sufficient conditions were given
on the existence of robust stochastic stabilization, and in
Cao and James (2000), y-suboptimal H, state-feedback
control was presented using the stochastic Lyapunov
functional. Stabilization and H,, control via memoryless
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state feedback were introduced in Chen et al. (2004a) for
discrete-time jump linear systems with mode-depended
time delays using bounding technique for the cross
terms. In Xu et al. (2003), H, filtering was designed to
ensure robust exponential mean-square stability of the
filtering error system, and the £;-induced gain from the
noise signal to the estimation error was bounded by a
prescribed value.

For unknown jumping parameters, adaptive stabiliza-
tion has been studied (Caines and Chen 1985, Chen and
Caines 1989, Nassiri-Toussi and Caines 1991), where the
system state can be observed, but the jumping parameter
process cannot be directly measured and is estimated by
the Wonham filter under known bounds of the system
matrices. In Caines and Zhang (1995), the existence was
established for adaptive feedback control of jump
systems. The proposed adaptive certainty equivalence
feedback control, which employs parameter estimates
generated by the non-linear filter, stabilizes the system in
an average mean square sense without any restrictions
on bounds of the system matrices. In Tan et al. (2005),
a sampled-data based parameter estimator and linear
quadratic adaptive control were proposed for the case
where only the sampled-data rather than the complete
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process of the system state is available for control design
in addition to the unmeasurable jumping parameter
process, and the suboptimality of control occurs when
the sample step size is small enough.

In practice, precise control implementation is not
possible due to the finite word length in digital
processing, and the imprecision inherent in analog
systems. It is shown that robust control schemes,
including H.,, wn or [; synthesis techniques exhibit
poor stability margins if not properly implemented
(Keel and Bhattacharyya 1997). To make the system
insensitive to gain variations, non-fragile control design
has been investigated for deterministic uncertain
systems (Famularo et al. 1998, Kim et al. 1999,
Yang and Wang 2001).

The existence of time delays may degrade the control
performance and make stabilization become more
difficult, especially when the delays are not perfectly
known. Using appropriate Lyapunov—Krasovskii
functionals (Hale 1977), the uncertainties from
unknown time delays can be compensated for, such
that the design of the stabilizing control law is free from
these uncertainties (Ge et al. 2002, 2005). To avoid
possible conservativeness due to many conservative
transformations or the derivation of the stability
conditions, several types of techniques have been used
to obtain less conservative robust results for uncertain
delay-dependent deterministic systems (Park 1999,
Moon et al. 2001, Fridman and Shaked 2002, 2003).
In Wu er al. (2004) the relationship between the terms
in the Leibniz—Newton formula have been discussed,
which is useful in determine the optimal ones by solving
the corresponding linear matrix inequalities for less
conservative results.

In this paper, robust output feedback H., control is
investigated for a class of uncertain Markovian jump
linear systems with time-delays which are time-varying
and depend on the system modes of operation.
We will consider two jumping parameter measurement
errors, detection delays and false alarms, in a failure
detection and identification of the Markovian jumping
parameters, which are not possible to be suppressed
regardless of the sensors and algorithms used (Mariton
1991). The main contributions in this paper lie in

(1) the sufficient conditions on the existence of robust
stochastic stability and y disturbance H,, attenua-
tion established directly by the measured parameter
of Markovian jumping;

(i1) robust control design to overcome multiplicative
uncertainties of its gains; and

(ii1) delay-dependent stability criteria to jump systems
for less conservative stability results.

The rest of the paper is organized as follows. The
problem formulation and some preliminaries are given

in §2. Sufficient conditions on the existence of robust
output feedback H., control are presented in §3.
A simulation example is given in §4, and followed by
§5 which concludes the work.

2. Problem formulation and preliminaries

Consider the following class of uncertain linear stochas-
tic systems with Markovian jumping parameters and
mode-dependent time delays:

X(1) = [A1(Pws. ) + D, (P D]x(0)
+ [A2(Pij.t) + Aty D]X(E = T, (1))
+ [B](pmj,t) + ABl(pm_/}ta l)]”(t) + Bz(ij,t)W(f)
(1) = [C(pm_/.l) + Ac(pmj,is t)]x(l)
x(s) =f(s),  Pmjs = Pmjos  sE€[—2u,0],
(1)

where x(1) eR", u(t)eR™, z(1)eR"™ are the system
states, inputs and outputs, respectively; f(r)eR" is a
continuous vector valued initial function; w(r) € R™ is
the exogenous disturbance signal that belongs to
1[0, 00); pp, is the parameter of Markovian jumping
at time #; 7, (¢) is the time-varying delay; and real
constant matrices Ai(py;) € R, As(pp; ) € R,
Bl(pmj.t) e R ’ BZ(pmj, I) € Rnxmz’ C(ij, I) eR™*
are known matrices representing the nominal system
parameters, while the unknown matrices
Ay (Pmjiss 1) € R, A g, (Pmji> 1) € R, A (Pmjis 1) €
—R"™M 0 Ac(Pj e, 1) € R™™" represent time-varying
parameter uncertainties due to the presence of environ-
mental noises, disturbances, and modelling uncertainties
(Benjelloun et al. 1999, Cao and James 2000,
Chen et al. 2003). For the stochastic system under
study, the following Assumptions are in order.

Assumption 1:  The Markovian jumping parameter, p,,; .,
is a right-continuous Markov process and takes values
in finite set S = {1,2, ..., N}, defined by

a5 4 o(B), i#]j

P{pl1‘{/.f+A :.i|pl7‘{j,l = l} = { 1 +qA + O(A) l:]

where A >0, lima_g0(A)/A =0, g; is the transition
rate from i to j, and

Gi=—Y G ¢;=0. j#i )

J#i
Assumption 2:  The time-varying delay, t,,, (1), satisfies
O < Tpmm(t) = l"L]’m/‘./ = H <00, "';Pm/‘/(t) = hPm/,/ < 1’ mej,f € S
3)

with [, and hy, = being real constant scalars for each
Pmj,t €S, and p = max;e s{p}.
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Assumption 3:  The uncertain parameters are assumed
to be of the form (Xu 2003):

Au, (Pmj. 1> 1) = Hy(Pij. ) F(Pijc 15 OE1 (P 1)
Ay (Pnj 15 1) = Hy(Pij. VF( P, 15 O E2( P, 1)
A, (Pmj, 1> 1) = Hi(Pinj, )F (P 1> DE3 (P 1)
Ac (Pmj, 1> 1) = Ha( P, )P, 15 DEs( P, 1)

where Hi(pmj,) e R, Ho(pyj, () € R™*Y,
E\(pmj.i) € R, Ex(pnji) € R<", Es(pmji) € [R7xm
and E4(pmw;,1) € R are known real constant matrices,
and F(puj.i, 1) €R" are the uncertain time-varying
matrices satisfying

FT(ij,z, l)F(ij,z, l) S I, mej,l € S (4)

Remark 1: The parameter uncertainty structure as in
Assumption 3 is an extension of the so-called matching
condition, which has been widely used in the problems
of robust control and robust filtering of uncertain linear
systems (see, e.g., Benjelloun and Boukas (1997),
Benjelloun et al. (1999), Cao and James (2000),
Boukas and Liu (2000, 2001), Chen et al. (2003,
2004a) and Xu et al. (2003)). The matrices H(pp;,).
HZ(pmj,t)o El(pmj,t)a EZ(pmj,I)a E3(pmj,1) and E4(pmj,t)
characterize how the uncertain parameters in F(p,,;,, )
affects the nominal matrices A(p.;.0)s A2(Pmj0)s Bi(Pimy.)
and C(p;,,) of system (1).

In practical control systems, due to the existence of
environmental noises, disturbances, and small modelling
uncertainties, non-zero detection delays and false alarms
may occur in the mode detection of the plant. To describe
such phenomena, two stochastic processes are needed,
one is the p,;, in (1), which describes the real jump
process of the plant mode, and the other (we call it pgy; )
describes the measurement of p,,; ;, which can be used for
control design. For convenience of citation, as in Mariton
(1990, 1991) the following models are assumed to
describe the above two measurement errors:

e When p,,;, jumps from i to j, py, , is an independent
exponentially distributed random variable with mean
1/43, governed by

P = i- 0 .
Pipl. =j Pmij. 1o :]. — ngA +o(A). i#]j
mj, I+A Pmj,tg- =1 1 + qu + O(A), l:]
s € [10, 1]
(5)

The entries of the matrix, [q?j] e RN "are evaluated
from observed sample paths, and

== g% (=0, j#0. (6)
=

e When p,,;, remains at i, p;, , has transitioned from
i to j occasionally. An independent exponential
distribution with rate q}j is assumed to be

plpe =P =11 apA + o(A), i#]
mj, (+A s e [[0, t] 1 + qlllA + O(A), i :]
(7

with a matrix, [q}/] e RV of false alarm rates, which
can also be valued from observed sample paths, and

ah== _qj (qj=0,j#0). ®)
J#L
For simplicity, in the sequel, let M;(r) denote the
corresponding  matrix,  M(p;, ;. pmji, 1), for —each
Pyt =J> Pmj,e = 1,J, 1€ S, and we assume that the initial
time is #o=0, and the initial time values x(0) = X¢, py;.0
and py, , are deterministic.
In this paper, we are concerned with the design of the
following linear output feedback control law:

(1) = A3(p; )R + B3(ply; )2(0) 9
M(t) = K(pianj,l)i;([)s

where X(71)eR" is the state of the control, and
As(py )s Bs(py, ), K(py, ) are  design  parameter
matrices with appropriate dimensions to be determined.
In practice, precise control implementation is not
possible. In this paper, we assume that the imprecision
is described by additive errors, o pyj, )@ P, 1» t), of the
control gains, then the actual control is given by

u(t) = [1+ & P, )W P - D] K( Py JX(0), (10)

where a(p,,;, ;) is positive constant for each p,,; , € S and
&(Pmj 1 1) is defined as

" (Do, s OO Pyt 1) < 1, Vppy 1 €S.

Remark 2: Note that the control design only depends
on the measured parameter, py;, of Markovian
jumping, while the dynamic system is driven by the
actual mode p,,,, that is the reconfiguration of the
stabilization law consists of a switch of its gain K(py,; ,)
based on p;,; . The term a( puwj, )$( pmj, 1, 1) represents the
inherent variations of the control gains in the actual
mode p,,;,, at time 7 and has nothing to do with pj, .

Applying the control (9) to system (1), letting
£(1) = [x7(r), 7(1)]", we obtain the closed-loop system
E(1) = APy Py 1 DE@) + Ao Py, V&t = T, (1)
+ 32(pi71j, t)W(t)
2(t) = [C(pmj,t) + AC(pmj,ra t)]IOS(I)
IOS(S) Zf(s)s Pmj,s = Pmj,0, SE€ [_2M» O]»
(11)
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where
F Ari+ Mg, () (Bii+ A (0)I + 0€i¢i(l))K_/:|
i =
" LBy(Ci+ A1) Asj
c R2n><2n

- [ Asi + Ay, (2) _ By,
A2r — . 2 c IRann’ B2i — Ol c Ranmg’

[0 — [1 O]ERnxzn
for each pl(;/;/,l :j,pmj,t = ia Vi,je S.

Our control design objectives are as follows:

(1) robust stabilization. Determine the nominal control
gain K(p,,;,) in (10) and establish sufficient
conditions for the system (1) such that the resulting
closed-loop system (11) is robustly exponentially
stable in mean square; and

(i1) Ho control problem. Given a constant scalar y > 0,
determine the nominal control gain K(p;,,) in
(10) and establish the sufficient conditions such
that the resulting closed-loop system (11) is
robustly stochastically stable with disturbance
attenuation level y under zero initial condition
(x(0)=0), that is

J= E{ / ! [z7()z() — y*wT ()w(1)] dz} <0, Vw(r)#£0,
0

w(t) € L[0,00). (12)

3. Robust control

In this section, we consider the robust stability of the
time-delayed uncertain jump linear closed system (11)
without disturbance. To prove the main results, the
following lemmas are required.

Lemma 1 (Kreindler and Jameson 1972) (Schur
complement): Consider the following matrix of
appropriate dimension

|:Q11 On

of, 0x»

Then, Q is positive definite if and only if
Q1 — 0020501, > 0.

:|, Q22 > 0. (13)

Lemma 2 (Xie 1996): Given matrices Q=0Q", H, E
and R=R" > 0 of appropriate dimensions, then

O+ HFE+ETFTHT <0

for all F satisfying F'F < R, if and only if there exits some
p > 0 such that

O+ pHHT + p7'ETRE < 0.

Lemma 3 (Mariton 1990) (Infinitesimal generator, &,
of Markov process): For the jump system
X(t) :ﬂx(t)v u(t)apz/,/7 &) pmj, %) t)a

assume that f(-) is continuous for all its variables within
their domain of definition, and satisfies the usual growth
and smoothness hypothesis, g(xX(1), py,; ,» Pmj,1- 1) Is a scalar
continuous function of t and x(t) for each py, . pmj. € S.
Then, the infinitesimal  generator, ¥, of the
random process {x(t), pﬁm »Pmj.i» 1} can be described as
follows.

e When pﬁw = Dmj.1 = I, we have

. .
Zg(x(1)ii.0)= lim [ E{g(x(14 A)up 1y oPiranst+8)

|x(t) :xyp;,)qj’[ = i»pmj.t = is l} _g(xy i: i: t):l

=g/, 1,1, 0) + 1T (v, u(?), 1,1, 0)g (X, 1, , 1)

N N
+Y qig(xij.+ Y qhg(x.j.i0).
J=1 J=1
e When p,; , =] # Pmj = I, we have
. .1 o
L0, = lim | E{gCe(t+ 855 aoP e 148)

|X(t) zxap:;j,t =j9pmj,t - i’ t} _g(x’j7 i: t)]
:gt(xaja i7 l) +fT(x’ M(l),j, ia t)gx(xaja ia l)

+g(x, i, 1) — g (x.,i,1).

Theorem 1: The uncertain time-delayed jump linear
system (11) without disturbance (i.e., w(t)=0) achieves
exponential mean-square stability, and the output feed-
back control law (9) is robust if there are positive-definite
matrices Pj = P; >0,0=0T>0, Z=7"> 0, positive
semi-definite matrices X; >0, constants py;; > 0, py;; > 0,
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The proof of this theorem is put into Appendix A.

"Ly PiiBy;+ pyiELE5; 0 PyiHy; 0 KJ-T T
L 0 < 0 VIHy 0
L3 ,03ﬁE2TiE3,' 0 0 0 0
- Ly UZBy; 0 UZHy; 0 0
Wii=| Ls  —I+ py;ELEy 0 0 0 0 | <0 (14)
L5 0 -1+ ,01],'0[12] 0 0 0
L7 0 0 —,03jl'l 0 0
Lg 0 0 0 —pojil 0
| Lo 0 0 0 0 —pujid |
Xy Xy LYy Remark 3: It can be seen that the condition in (37) is
I = XzT,[ X3 Ty >0, Vijes, (15) non-linear in the design parameters A, Bs;, K; and Pj;.
YI{IO Tlf V4 In no-delay systems, these types of non-linearities have
' ' been eliminated by some appropriate change of control
where
FL, 7 [ @ut pyiELEG + poiEL By CTVi+ Xy, @i+ pyiElEy pAfZ]]
L, ViCi+ X Uji+ Uj + @ nX3; 0
Ls Oy + p3yiELEy; /LX%/T; 33 + p3ELEy pAlZ
L nZAy; 0 nZAs, —uz
Ls | = Bl Py + pyiE5 En; 0 pyiEGEy  uBlZ
Le 0 K; 0 0
Ly HT Py, 0 0 nHLZ
Ls 0 HLV;; 0 0
LLo ] | K; 0 0 0 |
vy Xy X Xy
i X )T s )
X = X oy | = X Xy Xy
L 2ji 3ji \T T
Xoji Xy X
with
N N 1 .
ATP; + Pridn + Y. qiPrj + > q;Pyi+ Yi+ YE4+ (1 + )0 +pkXi, ifj=i
(bll = j:l ./:1
Al Pyji + Priidv + ¢ (Pui — Pyi) + Y+ Y5+ (1 + n0)Q + X, ifj#i
N N 1 ’; . . .
> 4P+ Y qyPoi + nXiy  ifj=1i 16
By = =1 =1 (16)
qi(Pai = Poji) + nX; ifj#i
@13 = Piidoi — Y+ Tj + uXy;, @3 =—T — T) — (1 — h)Q + nXy;

n = max{|ql},
ieS

Vii = BLPyi, Ui = A5, Py
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variables with the general form of P; as follows
(Gahinet 1996, Masubuchi et al. 1998):

Pyji Pyi
P/l = T s V],ZES (17)
P2ji Pji

When dealing with the output feedback control
problem for time-delay systems, there are always some
parameters coupled with their inverse which is required
to be fixed a priori, see, e.g., Esfahani and Petersen
(2000) and Xu and Chen (2004). In this paper, if we
partition Pj; as (17) and use the linearizing change of
variable approach as in Xu and Chen (2004) for
condition (37), the design parameters Y, X1, Y;', X1/
will occur in the same inequality. Then, if we were to
transfer the control design problem into the framework
of LMI, we have to fix these parameters a priori,
which makes the obtaining of the optimal
relationships between the terms in the Leibniz-Newton
formula (26), (27) almost impossible.

To obtain an easier design technique, we choose P
to be diagonal block matrices

control systems states x(7), respectively. Subsequently,
we can obtain the optimal free weighting matrices
by solving the corresponding linear matrix inequalities
without the need to fix any design parameters, and the
corresponding results were less conservative than the
existing ones.

4. Robust H__ disturbance attenuation

In this section, we consider robust H., disturbance
attenuation for the time-delayed uncertain jump linear
systems (11).

Theorem 2: The time-delayed uncertain jump linear
systems (11) is stochastically stable with y-disturbance
H, attenuation (12), and the output feedback control law
(9) is robust if there exist symmetric positive-definite
matrices Py, P, Q, Z, symmelric positive semi-definite
matrices Xj > 0, constants pyj; > 0, pa; > 0, p3;; > 0 and
appropriately dimensioned matrices K;, Y, Ty, Ny such
that

(L MA1T,-ZA ﬁljiBli + pyiELE3;i cr ﬁljiHli 0 0 ]
L 0 0 < 0 0 VIHy KT
Ly pAlZ p3i ELEsi 0 0 0 0
Ly uBLZ 0 0 0 0 0
L_5 —MZ MZB]i 0 MZH],‘ 0 0
Ly uBLZ  —I+ pyETEy 0 0 0 0o |<0 (18)
Ly 0 0 —I+pi?l 0 0 0 0
Lg 0 0 —pgil 0 Hy, 0
Ly pHLZ 0 0  —pyl O 0
Ly 0 0 HL. 0 —pyil 0
L Ly 0 0 0 0 0 —puil
» Plji 0 viies lel/z /\912/,‘ A}le Igﬁ,_
i — 5 ,LED. > > -
J ot _ X 1T2,l Xopii X Ty
0 sz,’ T = N n R ~ >0 VijGS
Jt T T i bl >
. . . Xl 3ji X23/’i X33ﬂ Nfi
Though, such a block-diagonal Lyapunov matrix is o A} , .
a special case, it is reasonable to choose Lyapunov Yily T N; Z ]

parameters P;; for plant states x(f) and P,; for

(19)
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Vi3 + p3iET By
0o
X
W33 + o3 EL o
v,
nZ Ay
03 ELEy;
0

S O o O

/\7{3]'1'
/‘7%3_/5
Xoyji
X33ji

AT P+ Priidy+ Y+ YT+ (1 + )0 + X1+ ¢%(Pri— Pyjo),

ifi#i

where
07 Wy, + p3iELE + pyiELEy  CTVi + MX%lﬁ
L, MX%],"" V;C,- Ui+ Ul +
Ly s + pyiEYEnj uXiy;
N s
L_4 vy X3
l—G MZAli 0
I | = .
L-6 BI.Pyji + p3i ELEy; 0
_ 0 K
Ls G 0
L—Lg H{ Py 0
10 0 HLV;
i A
L Ly i 0 K
Ry By f,
_ = - - ji ji )ji
Xy X X —r = -
5 oT % o X%lji X?l/’i X%Z/‘i
Xi=| X Xozi Xoyi | = _,  _ 7 _
v T‘ v v X%zﬁ X%2ji X22/'i
_X13ji X23ji X33ji g - o
- : | 2 T
Xz Xy X
with
W=
N D N 1D o3 o s
> 4iPrj+ Y qiPoi+ Xy, ifj=1
Wy =1/~ =1
A(Paii — Pyji) + X7 50

A ~

Y, T

W3 = Pyidyi— Vi + f}{—i—u/\;{zﬂ, Vi = ﬁljiBzi-i-]\Af;—l-M/\A/ig,-,-,

~ ~ ~ N ~ ~ N ~ N N
ALPi+ P+ Ya+ YE+(1 +77M)Q+MX}151'+X%qijplij‘i‘_Z%qileIji» j=i
= j=

JFi

W3 =—Tj— 7:5— (1 =h)O + uXni, Wag= —N;—i-uf(zsﬁ, Wy = X,

n= r?EaSX{qii”’ I/ji = B3T,P2,l, []ji = A;szl

= Puji

- il

2
i XTuji

3
X Xy

ST ot o _
X12ji X 12ji Xoji Xo3ji

L 7
L X1y Xiy Xy X |

7|
X12ji

2 2
X12ji X13ji

vl
X13ji
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The proof of this theorem is put into Appendix B.

In the case when the jumping parameter process can
be directly and precisely measured; that is, p,, , = p,”nj’,,
Vte[0,00), and the closed-loop system (11) is
specialized as

E(t) = A1( P, 1 DEW) + Ao P, V&t — T, (1))

+By( Py IW(1)
2(1) = [C(pmj.0) + Ac( .o, D) 1oE(7)

/121- _ |:A2i +0AA2,‘(Z):| c IRann’ éZi _ |:B()21i| c RZnXleﬁ

10 — [I 0] eRann

for each p,,;,=i, Vie S, then by Theorem 2, we have
the following corollary.

Corollary 1: The time-delayed uncertain jump linear
systems (11) is stochastically stable with y-disturbance

L&(s) = f(s), s = Pmio, S€[—2u,0],
§6) =AS), - Pmis = Pmio [=21.0] 20 H., attenuation (12), and the output feedback control
(20) law (9) is robust if the jumping parameter process can be
where directly and precisely measured, and there exist symmetric
_ A+ A, (1) (Bii 4+ Ap, ()T + cipi(1))K: posz.tz.ve-deﬁn'zte ’m.alrzces 'Pl,-, ~Pz,;, 0, Z, symmetric
Alji = Bs(Ci+ Ac(1) A positive semi-definite matrices X; > 0, constant py; > 0,
) 3; ! G 3 p2i > 0, p3; > 0 and appropriately dimensioned matrices
nxzin
eR K;, Y., T;, N; such that
[ Ly waAlZ  PyBi+ pyETEs; 0 Ccr PuH), 0 0 |
L, 0 0 KT 0 0 VIHy KT
Ly pAlz 03 Y Esi 0 0 0 0 0
Ly ,uBZTiZ 0 0 0 0 0 0
Ls —pZ HZBy; 0 0 WZH; 0 0
Lg ,U,BIY;Z -1+ ,()3iE3Tl~E3f 0 0 0 0 0 <0 (21)
L, 0 0 ~I+peil 0 0 0 0
1:8 0 . 0 0 —,04[1 0 Hz,' 0
Ly wHNZ 0 0 0 —pail 0 0
L10 0 0 0 H; 0 —,02,'1 0
L11 0 0 0 0 0 0 —,01,‘1_
X X X Ion’i
- V7 % T T
Fo=| A X Xae Tids o0 vieg, (22)
{(131' ){231' ){331' ]\Zi
Y, 17 N Z
where ML ] (Ui + p3ETE + puEL Eyi CTVi+ /«L)A(%l,- Wy3 + pyELEy, By |
1:2 ILX%IT,- + ViTC[ Ui+ Ul-T + W /LX%Z[ /LX%L'
Ls T + py ELE), MX%;- P33 + p3ELEy; W3y
Ly o7, X%, Wl Wy — 1
Ls nZAy 0 nZ Az WZBs;
Lf’ - Bl Py + p33i ELE) 0 p3iELEn; 0
Ly 0 K; 0 0
Ls G 0 0 0
Lo H{Py; 0 0 0
Lio 0 HYV; 0 0
Lud | 0 K; 0 0
L Y X Xy Xy
X X X I
o OT v o X1, Xy X Xy
= Xiy X Xozi | = I ’
L /\717‘31 /\7{31 )?3:” 12i 12i 22i ~23z

o7
X13i

27 vT
Xz Xo3 Xy
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N
Wy =A1TI~P1i+P1iA1i+ Y+ Y,-T+(1 +THL)Q+/LX%][+Z%‘]'PU
=1

J=

N
\1122 :Zqijpzj—FMX%“, \I'13 :PliA2i_ Yi+ T[T~|—,U,X%2[,

J=1

Wiy =PBy+ N +uXly, Uy=—T— 17— (1 =)0+ X,

Uy = —NT+ X3 Uy =p X33, 7 =1}”lEaSX{(1ii|(]ii|}y Vi= B3Py, U=A3 Py,

[P Py O Z ¥, T; Ni]=pi'[P1i P Q Z Y: T; Ny,

5 5 51 L
Xlli Xlli X12i X13i
27 3 02 2

Xlli Xlli X12i X13i
Ry &%, B B
12i 12i 22i 23i

ST oot o A
X13i X13i X23i X33

= Pai

A~

A~

5. Simulation

To illustrate the usefulness of the above theory, let us
consider the following examples.

Example 1:
linear

with

Consider a time-delayed uncertain jump

system (11) in R’ two  regimes

Pmj €S =1{1,2}. For Mode 1, the dynamics of the

system are described as

C7 -5
A = , Ay =
0 -8
0.5 1
By = , G =
B 2
1 277
Hy = , En=
2 0.5
017"
by = , B3 =-0.5,
L 2 ]
70977
En = . 1 =0.1,
0.2

—4 3

H>y = 1.

hy =0.5,

3

Ol1=2.

%! 2 v1 vl ]
Xlli Xlli X12i X13i
27 3 2 2

Xlli X]li X12i X13i
ST T o ~

X12i X12i X22i X23i

vii 2l vT v
—X13i X13i X23i X33

For Mode 2, the dynamics of the system are described as

T 4 4 0
Ap = , An= )
2 1 1 -5
m—1 17 277
B, = , Bn= , G = )
1 1] 1
- | a7 17
Hp = , Epn= , Exn= ,
B -3 0.2
Ex» =06, Hy=2
177
E42 = . U2 = 01, 1’12 = 04, o) = 3
0.2

We assume that the noise attenuation level y=1.2, and
suppose that the matrices of transition rates are given by

—-10 10 -3 3
[9iflaxa = . [qg]zxz = ,
L 20 =20 5 =5
-5 5
[q}j]2x2 =
L 4 —4




Downloaded By: [Kang, Y.] At: 15:24 8 November 2007

52

Y. Kang et al.

Solving the LMIs in (18) and (19), we obtain the

solution as follows:

R M 0.756 —0.1757] . 0.148 —0.067
Py = , Pip= ,
| —0.175 0.443 | —0.067 0.274
R M 1.000 —0.1177 . 2.895 —1.453
P = . Pio= ,
| —0.117 0.510 | —1.453 2.255
. M 7.138  —5.667] . 6.153 —4.726
T = ., Tp=
| —5.705 9.594 | —5.380 9.944
R 4.337 0.807 . 2.573 0.562
Py = , Pp= ,
| 0.807 2.865 0.562 2.041
N [[3.860 2.116 . 8.647 5.647
Py = , Pyo= ,
| 2.116 3.539 5.647 7.599
[ 6446 —49777 . 6295 —5.008
Ty = , TITyn= ,
| —4.999 8.870 —5.105 9.406
. [—8.435 6.694 . —6.146 4.713
Y= , Y= ,
L 5.939 -9.778 5.388 —9.958
. [—7.943 6.128 . —5.568 3.665
Yo = , Y= )
| 4.893 —8.789 5.459 —10.057
_[0.003 0.001 . 0.601 —-0.474
Q: 5 Z: s
1 0.001 0.001 —-0.474 0.872
™ 152.418 -90.472 4.756
—-90.472 178.250  —9.403
4.756 —9.403 996.581
/\;11 = 8.305 —16.477 107.227
—116.994 92.267 —0.030
87.333 —160.958  0.023
| —20.875 9.657 0.025
[ 91.843 —70.944 17.690
—70.944  129.860 8.860
17.690 8.860 1712.300
Xn=| 4776 2386 144.210
-91.921 71.407 0.001
76.319 —133.050 —-0.010
| 7.531 —-21.410 —0.004

J

—42.435 —3.346
2.060 —45.679

—0.843
, K=
—115.244:| |: 2.180

(062177

| —0.165 |

[ 4111
~3.695

[ —0.793
1.464

[ —0.624 ]
1.149

pi12 = 0.078,  p12 = 0.167,
p211 = 0.609,  p3;; = 0.276,
P21 =0.252,,  paxn = 5.585,
p31 = 0.348,  p3n = 0.582,
158, pap1 = 19.488,

—20.875 ]
9.657
0.025
0.027
9.115
—7.557
8.156 |
7.531

—21.410
—0.004
0.002
—7.613
21.320

Uis [ —76.958 —0.589 }
| —0.583  —80.969
Ui [—173.858  —1.063
| 1187 —157.80
PR T’ vy
| —1.380
U — ~106.429  8.381
| 8.269
po_ [0577 T’ .
| —1.018 |
[ 063 T’ v
| —0.584 |
[ 089 T’ P
| —0.712 |
oo [ 1377 T’ P
| —1.020 |
e = 0.167,
P12 = 0.079,
p212 = 0.153,
p312 = 0.073,
pa11 = 9.452,  p41p =48
pa22 = 4.182,
8.305 —116.994 87.333
~16.477  92.267  —160.958
107.227  —0.030  0.023
983.803  —0.033  0.018
—0.033 111911  —91.689
0018  —91.689  150.255
0027 9115  —7.557
4776 —91.921 76319
2386 71407 —133.050
144210 0.001  —0.010
1736.900 —0.004  —0.001
—0.004 92462 —76.621
—0.001 —76.621 137.410
0.002  —7.613  21.320

8.804 |

i
|
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[ 119.168 —68.442  5.190
—68.442  170.693  —10.160
5190 —10.160  494.440
Xoy=| 4829  —9.490  150.705
—96.480  80.542  0.004
71394  —149.340 —0.293
| —24.073  9.663  —0.007
[ 251.674 —176.139  66.028
~176.139  259.635  32.979
66.028 32979  2044.842
Xpn=| 59345  29.641  605.962
—4696 7326  —0.001
20864  —70.281  —0.010
| —5.000 —18.647  0.004

Therefore, by Theorem 2, the corresponding parameters
of a suitable robust output feedback control law (9) can
be chosen as

53
4829  —96.480  71.394  —24.0737]
—9.490 80.542 —149.340  9.663
150.705  0.004 —-0.293  —0.007
334.947 —-0.015  —0.201 —0.006
—0.015 100.234 —80.560  13.351
—0.201 —80.559 136.532 —10.419
—0.006 13.351 —10.419 9.497 |
59.345  —4.696  20.864  —5.000 ]
29.641 7.326  —70.281 —18.647
605.962 —0.001 —0.010 0.004
1634.627 —0.001  —0.008 0.004
—0.001 90.505 —73.603 —6.343
—0.008 —73.603 141.486 13.189
0.004 —6.343  13.189 9.660 |

[ R IR N IR R
"o 03] o —03) " loof

£ [ 0] £ _[0 0.3] £ _[—0.2 0]
12—_0 o2l 7o 21 B2 1 o

(0.2 0 -0.1 0
£y = , Eyp=

[—18.683  5.405
Az = ,
| 5.055  —29.781 |
[—71.775 17.470 7 1.624 17
A312 = 5 Kl - 5
| 19.233  —82.112 ] —1.380
r—15.584  11.321 7
Ay = .
| 8373  —19.677
r—25311  21.099 T —0.84377
A322= 5 K2= 5
| 19912  —30.844 | 2.180
g _[F00T1], _[-0238
T 20336 TP T [ 0015 )
B _[ 01097, [—0307
27 0000 TP T [ —0.2s8
Example 2: Consider the robust stability of the

uncertain system (1) with the following parameters:

ai; 0 } [—3 —0.8:|
A = , Ap= ,
14 10 02 -2
[03 0
dor= 0 —0.2}’
(0.1 —0.1 1 0
An = 0.1 —0.1}’ B“:[o —0.1}’
B = 0 1:|,
[0 0.1

10.2 0.1 0 -02
1 0
C = ,
L0 1]
c __0 1 o — 01 o —
2_-1 0 b 21 — 1 0 ’ 22 — b
Lo _[002] . [-10
31—-0 1 5 32 = 0 1 5
-2 2
[9ii]2x2 = s _s|

This example was given in Boukas and Liu (2002) for
“ajy=—1". To compare with Theorem 9.18 in Boukas
and Liu (2002), Theorem 1 should be reduced to the
conditions that the jumping parameter process can be
directly and precisely measured and controller can be
accurately implemented. Furthermore, we also assumed
that

hh=hy=h
AAZ(ij,z, Z) = H3(ij,z)F(ij,z, Z)E2(pmj,l)
AC(ij,n N = HZ(ij,r)F(ij,r, l)El(ij, 1)
The corresponding results are similar to Corollary 1,

and are omitted here. The maximum allowed value of
time delay for different “/” obtained from Theorem 1
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Table 1. The maximum allowed value of time delay ().

h 0.2 0.5 0.9

an=—1 E. K. Boukas (2002) 0.1830 0.1064 - -
Theorem 3.1 0.7012 0.6916 0.6732 0.6326

ay=-—10 E. K. Boukas (2002) 1.5745 1.3378 0.7780 -
Theorem 3.1 1.8474 1.5993 0.9258 0.4949

are shown in table 1, for comparison. The table also lists
the results obtained from Theorem 9.18 in Boukas and
Liu (2002). From the example, we can find that
our results show much less conservatism than those in
Boukas and Liu (2002) especially for the increasing of
the value of /.

6. Conclusion

The problem of robust output feedback H,., control
for time-delayed uncertain jump linear systems has been
studied. We have presented sufficient conditions on the
existence of output feedback control directly by the
imperfect information p;,. ,, which guarantees not only
the robust exponential mean-square stability but also
the y-disturbance H,, attenuation for the closed loop
system for all admissible parameter uncertainties and
time delays. However, all of these results are established
under condition of a prior knowledge of the upper
bounds of the system uncertainties. A possible direction
for future work is to obtain adaptive H,, control laws
with less knowledge of those bounds.

Appendix A. Proof of Theorem 1

Proof: Consider the nominal time-delayed jump linear
system X, without disturbance

E(1) = A1 (DS P, O + A2 (P VIoE(t = T, (1)
Xp: 2(t) = [C(ij, 0+ AC(pmj,ta Z)]IOE(I)
1o&(s) =£(5),  Pmj.s =Pmj.0» S€[—21,0],

(23)
where
/i (po » ) A (ij, t) Bl(ij, l)K(P,(;,_,; [)
V(Do s Pmjit) = ; :
nj, 1> Pmij. t i Bs(pry. )C( P, 1) As(pSy )
c [Ran2n
N A )

Note that {(§(1),p}; > Pmj). ¢ = 0} is non-Markovian
because of the existence of 7, (7). To transform (23)
into the framework of Markov systems, define a process
{(g,,pz%,,pmj’,),t > 0)} taking values in Cj as follows:

£ =80+ —21u<0=<0},

where  Cop = J; ;o sC[—2u1,0] x {i,j}, and C[-2p,0]
represents the space of continuous functions on interval
[— 21, 0]. Then, similar to Xu et al. (2003), we can verify
that {(§., py; ;» Pmj1)- t = 0)} is a strong Markov process
with state space Cj.

Consider the following Lyapunov function candidate:

V(& Dy s Prjts ) = Vit Vo + Vi + Ve, (24)
where
Vl - ET(Z)P(pfygj,[>pn1j,t)é(l)
= X" (P11 Py, OX(1) + X (O P2y 1 Py, )X(2)

vy = f T (5)0x(s) ds = f £T(5) 1T QIok(s) ds
t (1) t

“Uomj " omj

0
_ T
V3 = n/u /tiex (s)Ox(s)dsdo
0 !
= [ &oronsdsw
—pn J 140
0
_ . T .
V4 = /M /ng (5)Zx(s)dsde

0 t
= f eT(s)IT Q1oE(s) ds de.
—pn J 140

From the definition of infinitesimal generator, %, in
Lemma 3, we have the following observations.
Case 1: p;,., = pu;, = i. It can be verified that

N N
LV =€) |:A1Ti;Pii + PiiAvi + Zqszfj + Zq}jpji:| &(1)
= =

+ ET(D) Py Anix(t — (1) + x" (1 — (1) AL Pyt (1)
LVy =TI Q&) — (1 — 1(0)xT (1 — (1) Qx(1 — T(1))

N 1
#a[ O0xds
=

1=7;(1)
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<E'WIFOLED) — (1= hy)x" (1 — 7(1)) Qx(1 — 7(1))

N t
+ Z qij / x7(s)0x(s)ds
=1

t—1i(1)

LV = (ITQIE() — 1 / T ()0x(s)ds
-

LVy = u (OIL Z1E(r) — / t xT(s)Zx(s)ds
t—p

<ué i zin - [ STz ds,

1—=7(1)

Noting (2) and (3), we have

N ! N .
> 4y / (0x()ds < Y gy / xT(5)Qx(s) ds
J=1 4 t—p

—5() J=Lj#

=i [ F00x0ds

<y / | o (3)

To overcome the conservativeness in selecting the
optimal weighting matrices between the terms in the
Leibniz—Newton formula, the following condition is
presented (Wu et al. 2004):

(X" ()Y + xT(t — d()T]

!
X |:x(l) - / x(s)ds — x(z — d(t)):| =0,
1—d(1)

where the free weighting matrices Y and 7 indicate
the relationship between the terms in the above formula,
and they can easily be selected by means of linear matrix
inequalities.

The following conditions are also employed to
complete the proof:

1" (OX(py, s P, )5(1)

t
- / T OX(py v py )E s = 0 (26)

=7, (1)

2 |:§T(l)10T Y(sz',npmf,t) +x7(t— T, (1) T(p:;j,tapmj,t)i|

X [Ioé(t)— /1 x(s)ds — x(t— ‘L'pm/‘,([)):| =0,

1= Tpps 0

(27)

where ¢7(2) = ["(0) xT(¢ — 1, ()], and X(pS,; 1 i)
are defined in Theorem 1.

We have

gV(él’ i’ i? Z‘)

N N
<& |:A1TiiPii + Piidvi + Z qiiPyj + Z Q;,'Pji:| &(1)
: —

J=1 J=
+ET (O PiAzx(t — (1) + X7 (1 — (1) AT, P& (1)
+ (14w (1] QLo&(r) — (1 — hy)x"
X (t = (1) Qx(t — 7i(1))

1

+ nEN(ILZ1E(r) — / x7(s)Zx(s)ds

1=7(1)

2 &1 OI YWy i)+ X7 = T (VTP i)

!

X |:Ioé(t) — x(s)ds — x(¢ — tpm,(l))]

1=Tp,pyi (1)

+ 1 (X Py Py )5(1)

1
- / ET(OX (1 o (1) ds

I—T,,m” (0

t
X" (6, $)Ciix(, 5)ds, (28)

1=7,(1)

= ¢ (0 Eag(r) —
where

x'(t.5)= [i?T(l) xT(t—1i(t) XT(S)]
_Ci)n-i-M/LT,-iloTZ]o/iui &)12+M1‘11T,~10TZIO/‘121':|

1

[1]

ii

L &)1T2 + /Lz‘izTiI()TZIOz‘i1ii Dy + /izT,»IOTZIo/izi

. . N
AlPi+ PiAvi+ Y qi Py
=

N
+ b P+ 15 Ylo+ I YIIT + (1 +m) 1L Ol
CDH = ./:1

+uXy, ifj=i
/‘ilTj,-Pji-l-P/i/‘ilji-i-qui(Pii— Pi)+ 15 Yily

+l Y I§ + (L +nm)§ Qlo+u Xy, ifj#i
Dy :Pji/i2i —IOTY/:"FIUTY;{"‘NXZIE
Dy = —Tji— T,T— (1 =h)Q+ Xy

n=max{|qil}.

If §,<0, I';>0, then for each i€ S and any scalar
B > 0, we have

[PV, i i, 1)] < —cneP |60
+ BeP' V(g 1,0 1), Yie,B>0 (29)
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where o) = min;e s{Amin(—E;)}. Similar to Xu er al.
(2003), we can verify that
t

Ix(s)I1*ds

1—7;(1)

V(éta ia ia Z) =< j~max(Pii)”§(l‘)”2 + )vmax(Q)
0 t
Jimax 2dsdo
4 Dima(Q) / M /M FORT

0 !
+ Jmax(Z) f / [1%(s)I|* ds d6
—u Jt+6
< Jmax(P)IEDI

+ (it + 1) Amax(Q) f x(s)|1>ds
1=

!
+ timax(Z) | [1%(s) )1 ds.

I—p

Noticing that in nominal system 3,

E(1) = A1&(1) + Anilo&(t — T, (1)

and letting oy = max,»es{2||zil,-i||2}, o3 = MaX;e g X
{21427}, we have

DI < aallED)* + aslix(t — T, (D
This, together with (29), gives

Ll VI, i1, 0] < (—a1 +aap)e £

1
s 2)B [ 155 — o)1 2ds
—p

+ Bl [(1en + 1) 2max(Q)

t
a2 [ 5O (30)
—p
where a4 = max;c s{Amax(Pi))}-
Using Dynkin’s formula (let feC?  then
Elf(x7)|x] — flx) = E[fOT Lfx,)ds|x]) (Kushner 1967),

for any 7'> 0, B> 0, and each p;, , = pu =1, i€S,
we have

E{eﬁTV(ETap;Onj, 7> Pmj, T» D"’;:Os P,(;j, 0> Pmj, 05 0}

= V&0, Py, 0> Pj,05 0)

T
+ E{ / L[ V&, i1, 5)] dsl€o. Py 0 Pu.0- 0}.
0

Since the initial time values x(0)=xo.pm0 and py.
are deterministic, that means &, is deterministic too.
Taking (30) into it gives

E[ eﬂT V(%-Tap:;% Tapm_/} T T}

T
< V(éoapgaj,Oame,o,O)+E{(—011 +Ol4,3)/0 P N1E0) 1P de
+ Bl(un~+ 1) Amax(Q)

T t
i Z)] / o f ()| Pdsds
0 t—p

T t
s Z)B /0 o / ||x<s—rpmj,s(z>>||2dsdr} 31)
t—p

Letting 6 =7—1/(f) and observing the following
inequalities
dr(z
do
h

—

(1) =

dt§1

(32)

we have

T /
/ eﬂt/ | x(s)||*dsdz
0 t—p

0
< / PO x(s)]Pds
1
T—n T
4 / P x(s) |2 ds + / P ()2 ds
0

T—n

T T
=1 / P x (1) |17 de < / A g 1P de,  (33)

- ©

T t
/ o / 155 — Ty (D12 ds
0 t—p
0
< f P x(s — tpy (1)) 2ds
—K

ueﬁ‘”’”llx(s - Tpmi,s(l))uzds

pePSTx(s = Tpy (D)1 ds

T
=pu / PN x(t — Tpyy (1) 1I7dt

T o - -
i IR R OIR
11— /1,' —2n

P2 x(1) |17 d e

1

_1 P E ()P d. (34)

IA

1

1 T
12
hi ~/—2p.
T
12
hi /2#
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Substituting (33) and (34) into (31) leads to

E\ T V(Er s roPiy 1 D)
< V(&o0.Ppj.0-Pmj.0,0)
+E{(—ou + a4p) fo Teﬂ’nsmuzdt
+ Bl + D max(Q) + @2 pmax(Z)]

T
x / P E(r) |12 dt

-

@32 Dmax r
L _ah(,Z)ﬂ eﬁ“““)nsa)nzdz}

< V(& Py, 0> Pmj0-0)

0 0
+E{asﬁeﬂ” / IE)N1* di + aspe / i [HOIR
e

—

=21

T
+[—a +a4ﬁ+a5ﬂeﬂ“+a6ﬂ82ﬂ“]/0 eﬁ’llé(t)llzdt}

where a5 = [(un + Dimax(Q) + 2 pt/max(£)]e,  and
Qo = (OlSH/z}vmax(Z)/(l = hy)).
Choose B > 0 such that

—ay + a4+ aspel + agpe* < 0.

Then, we have

E{TVER Py o P )} < € (35)

where ¢ = V(&. pjy g:Pmi0. 0) + Elas el S0 NE@ P+
o [2,, 1E0)]dr).

Hence, the LMIs E; <0, I';>0 guarantee that
the nominal time-delayed jump linear system X, is
exponentially stable in mean square, for p;,. , = pmj, =1,
ViesS.

Case 2: p;,, =, Pmi.=1, and j#i. Following similar
lines as in the proof of the Case 1, we have

LWV (xy,J, 0, 1) < ST(I)[I‘IlTj,-Pﬁ + PjiAz\lji + qj(‘)i(Pii - Pji):lg(t)

+ (D) P Ayix (1t — (1))

+ X7t — () AL PiE(D)

+ (1 + e (O 0L&(r)

— (1 = h)xT(t — ©(1)Ox(t — (1))

—UET O Z () — / {9z ds
1=7,(1)
< ET() 8,1 — / (6, $)Tux(t. 5) ds.
1—=7(1)

(36)

where

)+ M/ilTﬁIOTZIo/ilﬁ i+ Mz‘ilTjil()TZ[oz‘izi

ol + M"izTi]oTZIO/il_/i dy + /Ig;]gZI()/iz[

and the LMIs E;; < 0, I';;> 0 guarantee that the nominal
time-delayed jump linear system X, is exponentially
stable in mean square, for pj,, =j, py; =i and j#i,
Vj,ieS.

Applying the Schur complement, it can be shown that
for any i,je S, E;; < 0 implies

(i)]l &312 /,LAAEII({Z

uZhAy; pZlyAdy  —pZ
which is equivalent to the following condition:
Dy C,-TB3T,-P2/;+ILX2 D13 pAlZ

1ii

PyiByCi+ X3, ALPyi+ Pyjidy+ @y uX3; 0

Lii

o7 nX3; ®y; pAlz
nZAy; 0 wZAy —pZ
PyjiBi; 0
0 K/,T
+ . 1[0 K; 0 0]+ I[Bl.Py; 0 0 uBlZ]<0.
WZB); 0

(38)

By Lemma 2, a sufficient condition guaranteeing (38) is
that there exists a positive number p; > 0 such that

(O] CTB{,-PQJ','—Q—/LX%I.,. D3 /,LAEZ_

sz,-B3jCi+[LX%I»TI» A§P2ji+P2jiA3/+®22 MX%ii 0

Pji
@l nXx3 33 pdlz
nZAy; 0 nZAy —pZ |
[ PiBi] 0]
0 KT
+ 05 I[BTPy;; 0 0 uBlLZ]+ 1[0 K; 0 0] <o0.
0 0
LuZBy; L 0

(39)

Replacing p;iPyji, piPajis £;iQs piiZ, ;iXjis p;iY i and p;; Ty

with Py, Py, O, Z, Xj;, Y;; and T}, respectively, and
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applying the Schur complement shows that (39) is
equivalent to

W
[ on ClVit+uXy, @i wdlz PyBy 0]
VICHuXy, Ui+ Uf+®n pX3; 0 0 K]
B ol X3, dy wdlz 00
nZ Ay 0 uZAr —pZ pZBy; 0
B{Pyji 0 0 wBlZ -1 0
L 0 K; 0 0 0 -7
<0, j,ieS.
(40)

Hence, the LMIs (15), (40) guarantee that the nominal
time-delayed jump linear system X, is exponentially
stable in mean square for pfnj’, =], Pmjr=1, YV, i€ S.

Then, for the uncertain time-delayed jump linear
system (11) without disturbance, replacing A4,;, A;, By;
and K; in (40) with Ay; + H\;Fi()Ey;, Ay + HyFi(t)Ey,
B+ HyiFi(1)E3; and K + o;¢,(1)K;, we can obtain that
(40) for system (11) is equivalent to the following
condition:

[ PyiH),; | _ElTi_T [ EL] _PjiHli_T
0 0 0 0
0 EL, EZ, 0
Wi + Fi(t) + Fi(1)
nwZHy; 0 0 WZH\;
0 ET ET 0
. 0| L 0 | L 0 | | 0 ]
0 ] _E[{[_T EL] T oo 7
V_,{Hzi 0 0 V_;Hzf
0 0 0 0
+ Fi(1) + Fi(1)
0 0 0 0
0 0 0 0
| 0 ] L 0| Lo ] | 0 ]
T07 07" [o] ro"
T T
o |&| &) o
0 0 0 . 0
+ #i(1) + ¢; (1) <0.
0 0 0 0
0 0 0 0
_Ol,' L 0 i L 0 i _Ol,'

(41)

By Lemma 3.2, a sufficient condition guaranteeing (41)
is that there exist positive numbers p;; > 0, pa;; > 0,
p3;i > 0 such that

[ PyiH | [Pyt T CEL[ EL !
0 0 0 0
. 0 0 ET || EL
Wii + p3i + 3
uWZHy; || nwZHy; 0 0
0 0 EL || EL.
. 0 JL 0 | L 0 | 0 |
C o o 77 CELTERTT
VEiHy || ViHa 0 0
oo 0 0 || o
Tl o | o || o
0 0 0 0
. 0 L 0 | L 0 |L 0 |
rorol” o0 o 1"
T T
o [0 K || &
0o lodlo
+ piji + 0 <0.
0 0 0 0
0 0 0 0
Lo || o | L 0 [ 0 |
(42)

Applying the Schur complement shows that (14) is
equivalent to (42) for all pj., =j, pmi, =i, Vj,i€S.
This completes the proof. O

Appendix B. Proof of Theorem 2

Proof: For the nominal time-delayed jump linear
system X; with disturbance

E(1)= A1 (Pl 1. JED) + As (P NoE(t — T, (1)
+ By(pu )W(1)
2(0) =[C(Pmj.) + APyt D) ] 10E (D)
10E(S) =£(8)s Pmjs =DPmj0» SE[—1,0],

212

(43)
where

A By
BZ(pmj,x):[ 2(16 .I,f)i|.
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Letting ¢7(¢t) = [E7(¢) xT(¢t — 1:(¢)) wT(¢)], taking the Using Dynkin’s formula again (Kushner 1967), we
Lyapunov function candidate as (24), and employing have

the following conditions

1 (DX PGy 1P, )E(D)

T
E { / LV (xy, anj, o Pmj 50 s)ds}
0

t
[ EORGh, i ds 20, = E{VCxr iy gopmir D) = BV 60,00y 002000}

1=7p,,, (1)

Under the zero initial condition (x(0) =0), we have

2|:§T(t)lg Y(p,(;y',ppmj,t) + xT(l - Tpm,,,(l))T(P;;U;mej,t) E[ V(XOnPZy' 0> Pmj, 05 0)] =0.

+wH (NP} 1P, ,)]

X |:IO.§ - /t x(s)ds — x(t — rpmf‘,(t)):| =0 (44)

= Tﬂm/. t ([)

we can obtain

Thus, for any w(t) € L,[0 o0), we have
T
J=E{ / |:ZT(t)z(t) —V*wl(O)w(r)
0
+ gV(xhpfn‘,’,ppmj,tv t)} dt}

- E{ V(XT, P,(;_,’,T, ij,T» D]

!

gV(xbjs i’ l) = ET([)éjig(t) _/ )_(T(ts S)ifi)_((ts S) dS,

where

Rest
|

T

) <E { / |:ZT(I)Z(Z‘) — v wl(Ow(r)
(43) ’

+ L V(X1 Py i Pt t):| dt}. (46)

[ +pd IS Zh Ay Wi+ p AL Zh Ay i3+ AL Z10 By
UL+ pALIT ZIg Ay Yo+ pALIT ZIg Ay Wy + pALIT Z1o By,
| WL 4 uBLITZIgA ;W5 + uBLIT ZIy Ay sy + uBLITZ1) By,

AlTiiPii—i-Pii/im-i-IoTYﬁlo + 1 YTIT + (1 + )L Q1
— N N | . .
+MX11ii+ZqUPU-+ZqijPii’ ifj=i
=1 Jj=1

AT P+ Py + 15 Yilo + L YEIT + (1 + ) 1T 0Ty + 1 X

+qp(Pi—Pp), ifj#i

U= PjiAy— I Yii+ IOTT;'FM/\_/lZ/i:

‘1'22 =

—Tyi— T/{— (1 =)0 + X,

Uy = Pjié2i+ IoTN,'{‘i‘H/\_/l}iia

Uy = —Nﬁ-i- Xy, W33 =Xy, n= TgaSX{lqu}

X ()= X"t —u@) wi(@) )]
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Taking (45) into the above inequality gives
mcrety o000

T
JSE/ 7ol &+ 0 0 0 £(1)
0 0 0 —21

Ci+ HyF(t)Esy, and K;+o;®(1)K; and using the
similar proof of Theorem 1, we can ecasily verify
that the control u(z) = K(py, ,)x(7) guarantees y-distur-
bance H,, attenuation (12) of the closed-loop system
(11) from w(r) to z(zr), if the coupled linear
matrix inequalities (18) and (19) satisfied. This com-

! _ pletes the proof. O
—/ (6, )Tiix(t, s)ds |dt
1=7i(1) '
By Lemma 2 and applying the Schur complement
shows that (19) and
[ W40l CTC CTBLPy+pX3,;, Wi Wy pdlZ PyBy 0]
PyiByCit uXiy, ALPoit Pyidy+o puXiy,  uXily, 0 0 K
\IJITS /,L/\A/%;ji \1133 \1134 MA;ZA 0 0
o, nXz, Wl Wyu—y uBtZ 0 0 | <0 (47)
nZAi; 0 nZAy pZBy —pZ ZB; 0
BfiPyji 0 0 0 wBTZ —I 0
L 0 K; 0 0 0 0 0 |

guarantee J<0 for any w(t)#£0 (and
w(?) € L,[0,00)), which also guarantee jy-disturbance
H,, attenuation (12) of the closed-loop system 3
from w(?) to z(1).

Then, replacing 4,;, A»;, By;, C; and K; in (47) with
A+ HiuFinEy,  Asi+ HiFiyEy, B+ HiF(1)Es;,
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